>

Wharton Classes:
When, Where and Why

OIDD 321 Final Project Motivated by
Stories of Frustrated Wharton Kids
Grant Cho | David Fan | Kevin Tan |
Sam Abello | Patrick Rich




l. Introduction

Problem and Model Objective

As Business Analytics (BUAN) gains popularity at
Wharton, the demand for STAT and OIDD classes
needed to fulfill BUAN concentration requirements
has increased. This results in two problems that we
wanted to address with our model: (1) inefficient
allocation of classrooms to classes based on
enrollment, and (2) conflicts in scheduling that
prevent students from taking courses that they
would want to take in the same semester.

The first part of our model is linear and allocates
classrooms in Huntsman Hall and Steinberg-Dietrich
Hall to classes to maximize classroom utilization.
The second part of our model is non-linear and
schedules STAT and OIDD classes separately to
minimize covariances between classes scheduled at
the same times. We wanted to minimize overlap
between related classes because based on our
experiences, students tend to want to take classes
that are similar (e.g. classes that cover computer
programming for data roles) to gain deeper
knowledge in certain fields. Further explanations of
our model will be provided in the “Model” section.

Assumptions

Our team made 9 simplifying assumptions to
overcome the lack of available data and to avoid
over-complicating our model for Solver to run
smoothly.

1. Classes held in Huntsman and
Steinberg-Dietrich halls only

This was a fair assumption given that most
STAT and OIDD lectures are held in these
two halls. We further assumed that no BUAN
classes take place in conference rooms,
above the 3rd floor of Huntsman or on the
ground floor of Steinberg-Dietrich, which is
generally the case.

2. Only undergraduate students included
Some classes have seperate quotas for MBA
students, but we decided to ignore these as
MBA quotas were complicated to account
for and MBA course demand data was not
easy to obtain.

3. Recitations not included
This was a simplifying assumption that
allowed us to focus on lecture scheduling,
and was reasonable given that not many
BUAN classes have recitations.

4.

S = P

No lectures happen on Fridays
This allowed us to focus our model on
Monday-Thursday time slots only, which is
typically when BUAN lectures take place.

Optimizing for Spring 2020 semester only
Because of the data that we had immediate
access to and our desire for findings to be
readily applicable, we structured our model
to predict and optimize for the upcoming
Spring semester, using only classes offered
in the Spring.

Constant course enrollment capacities
The maximum number of students that can
be enrolled in a certain class in Spring 2020
was assumed to be the same as in previous
Spring semesters, giving us a simpler way to
predict enrollment and apply our model.

Courses with unknown enrollment capacity

assumed to hold a maximum of 60 students
This was a representative average of
enrollment capacity for courses which did
not have available data on PenninTouch.

6 time slots for classes each day
Specifically, we had 1.5 hour time slots from
9am-6pm, which we believe is a realistic
picture of Wharton class scheduling.

Weighted average to find course demand
We recognize that the past enroliment data
we obtained will unlikely be truly
representative of the actual future demand
of a class. Thus, our predicted course
demand was based on a weighted average
of 70% historical demand and 30% Penn
Course Review-based regression, which we
refer to as “prior demand.” A class'’s prior
demand was calculated by weighting its
Penn Course Review ratings (eg. amount
learned, course quality, etc.) by arbitrary
coefficients reflecting the importance of
each of these ratings (Appendix D). The
coefficients used were based on our own
experiences. For instance, we agreed that
course quality was the most important
factor for classes and gave it a coefficient of
30 compared to amount learned, which was
assigned a coefficient of 15. It should be
noted these coefficients can be easily
adjusted to fit individual preferences.

1



Il. Data Collection

Data Sources

The majority of the data used in our model was
obtained through API requests (Appendices A, B, C)
while the rest was manually obtained online. We
gathered course descriptions and rating data from
Penn Course Review and course offerings,
enrollment capacities and historical demands from
Wharton Syllabi and PenninTouch. We also extracted
classroom sizes from Wharton Utilities.

Measuring Class Covariance

To achieve goal of better scheduling classes by
avoiding conflicting class placements for heavily
related classes, we needed to come up a measure
for class similarity and minimize that said metric
through our model. To do so, we decided to use text
mining techniques on course descriptions obtained
from the aforementioned Penn Labs API to quantify
class similarity or covariance. The specific method
we chose was cosine text similarity.

Cosine Text Similarity

n
A;B;
A-B 1:21

CABl = "
>4y B
i=1 fm=]

Cosine Similarity calculation for two vectors A and B [source

similarity = cos(6)

Cosine similarity calculates similarity by measuring
the cosine of angle between two vectors. In the
case of text, these vectors are simply count
representations of the different words that exist in
the corpus (paragraphs). Mathematically speaking,
cosine similarity is a measure of similarity between
two non-zero vectors of an inner product space that
measures the cosine of the angle between them. The
cosine of 0°is 1, and it is less than 1 for any angle
within the interval (0,rt] radians. It is thus a judgment
of orientation and not magnitude: two vectors with
the same orientation have a cosine similarity of 1,
two vectors oriented at 90° relative to each other
have a similarity of 0, and two vectors diametrically
opposed have a similarity of -1, independent of their
magnitude. Cosine similarity is advantageous
because even if the two similar documents are far
apart by the Euclidean distance (i.e. due to the sizes
of the documents), chances are they may still be
oriented closer together. The smaller the angle,
higher the cosine similarity, with 1 being the most
similar and 0 being the least.

‘Cricket' Axis
)

Doc Dhoni

Doc Dhoni_Small

Euclideah
Distance

\c:;/si?/msxance ‘Dhoni Axis
Cos®) .~ (X)

'Sachin' Axis
2
T The X, Y and Z axes represent the word
Dot Sachin counts of the words ‘Dhoni’, ‘Sachin’ and
‘Cricket’ respectively.
A graphical representation of Cosine Text Similarity
Results

After applying the cosine method, we obtained the
following similarity/covariance matrices:

STAT  stat-405  stat-422  stat-430  stat-435  stat-442  stat-471  stat-474  stat475  stat-476
stat-405 0.286769667 025 0382484311  0.390312375 0.39692831 L’mw 0.269581933  0.480929727
stat422 0220415734 0274689137 018367959 0239182437 0247385348 0253916688
stat-430 0.332595053  0.220176211 0312771621 024262374  0.263523138
stat-435 0.308895424  0.395020477  0.319013968 0.34430061  0.603007865
0.389610852

stat-442
stat-471
stat-474

0283806739  0.293540069 0371337768
0283766654 0231241328 0447741456
0337270313 0.206721213
stat-475 0.34099717

stat-476
STAT Class Similarity Matrix

OIDD  oidd-105  oidd-201  oidd220  oidd-222  o0idd-235  oidd-245  oidd-314  oidd-325  oidd-363  0idd-399  oidd-415

oidd-105 0433646964 045565257 056590126 0STOTBAIIA 0607030557 0563438239 0608036276 0675008044 0291869382  0.637401124
oidd-201 0355951641 0500711358 0450170264 0455624334 0477889504 0510238727 0474970784 056144012  0.46363642
oidd-220 03720949 041034275 0330341376 0416342263 (0460863546 0507319966  0.300004155 0383226818
oidd-222 0569875069  0.469236984 0485513621  0.493910037 0564419771 0539145580
oidd-236 0536253175 DATTBIIMA  054G651E2 0564550481 0511243918
0560936291

oldd-245
oidd-314
oidd-325
0idd-353
oidd-399
oldd-415

0566926627 0562233985 0251685181 0500278913
0518907414 0538513121 0286998401 0555770014

0624988517 0302149278 0574187515

0z 0,649832537
025819889

OIDD Class Similarity Matrix

The figures above indicate that classes such as
STAT471 and STAT430, STAT474 and STAT405,
0IDD245 and 0IDD220 (i.e. redder highlighted cells)
are not similar while OIDD353 and OIDD105,
STAT435 and STAT476 (i.e.greener highlighted cells)
are similar. OIDD 399 appears to be different from all
classes, likely because it is an independent study.

The results seem generally acceptable; however,
some minor corrections are needed to improve the
model. For instance, STAT422 had a very short and
uninformative class description, and, using personal
experiences, we have corrected our results to make it
more highly correlated to other predictive analytics
classes such as STAT471.



l1l. Model

Part 1: Classroom Allocation

The objective of this part was to maximize utilization
of classroom capacity by assigning classes with
enrollment sizes most similar to classroom capacities.
We used linear optimization to minimize the difference
between assigned classroom capacities and expected
class enrollments. In this case, we took class
enrollment as the lower of our forecasted demand for a
class and the class’s maximum enrollment capacity.
Thus, the decision variables were integer variables in a
table of classes by classroom capacities. The decision
variable table indicated how many sections of a class
were assigned to a classroom of a specific capacity.

Parameters

3 main parameters were used in this part: room type,
time slots available per room type, and forecasted
demand. Room types were designated according to
room capacity and summed into the categories. Time
slots were calculated based on the 1.5-hour time slots
from 9am-6pm on either the Mon-Wed or Tues-Thurs
schedule per room. This was then multiplied to the total
number of rooms per category. Forecasted demand
was obtained using the weighted method discussed in
the “Introduction”.

Constraints
We incorporated 3 constraints in this part:

1. Every section must be assigned a classroom
The sum of decision variables per class was
set to be equal to the given sections per class
offered in the Spring semester.

2. Classes can only be assigned to rooms that are
large enough to accommodate their demand
Classroom capacity was set to be greater than
or equal to the forecasted demand per section
(i.e. forecasted demand of a class divided by
number of sections of the class).

3. Rooms cannot have more classes scheduled
than there are time slots for
The sum of decision variables (i.e. number of
sections) per room type was set to be less than
or equal to the number of time slots available
per room type.

Objective

For each class, we took the difference between total
capacity of allocated classrooms and total predicted
enrollment, and added the numbers together to find
the total unused classroom capacity, which we want to
minimize. Total classroom capacity the sumproduct of
a class’s column on the decision table and a parameter
column with the corresponding classroom capacities.

Note: Due to Solver’s 200-decision variable limit, we broke our model into two parts:
(1) Classroom allocation and (2) Class scheduling (see Excel file for visuals).

Part 2: Class Scheduling

This part of the model utilized nonlinear optimization to
assign time slots to classes in a manner that would
minimize schedule conflicts between high-demand
classes.The similarities/covariances of class pairings
were used as proxies for class demand as we assumed
that students would be most interested in taking similar
classes, and our model sought to minimize the sum of
covariances between classes that would occur at the
same time slots. Due to the decision variable limits of
Solver, we had to separate STAT and OIDD classes and
ran department-specific (i.e. mutually exclusive)
optimization models.

There were 2 sets of decision variables for each
iteration. The first was a table of classes by time slots
to determine class assignments to time slots. The
second was a covariance decision table between
classes. The decision variables in this covariance table
were binary and set to be equal to 1 if a class pair was
scheduled at the same time slot and 0 otherwise.

Parameters

The class similarity/covariance matrices we obtained
using the method discussed in the “Data Collection”
section were the parameters used here.

Constraints
We enforced 2 constraints in this part:

1.  Each class must be assigned one time slot
The sum of decision variables per class in the
time slot table were set to be equal to be at
least 1.

2. Linking decision variables in the time slot
table to those in the covariance table

The corresponding covariance decision cell
(i.e. covariance of a class pairing) was set to
be greater than or equal to the sumproduct of
both paired classes’ columns of decision
variables in the time slot table. This way, the
sumproduct only equals 1 if both classes are
scheduled at the same time slot. This
constraint forces the corresponding covariance
decision variable to equal 1 if and only if the
two corresponding classes are scheduled
together.

Objective

To find the total covariance of all classes scheduled at
the same time slots, we simply took the sumproduct of
the covariance decision table and the covariance
matrix parameter. This was done separately for both
STAT and OIDD iterations of the model.



IV. Results Interpretation

Findings and Takeaways

After running solver, we were able to find a feasible
solution that minimized our objectives and satisfied
all constraints (Appendix E). Upon analysis, we
arrived with 3 key findings:

1.  Plenty of unused classroom capacity
The minimum difference in classroom
capacity and class enrollment that we can
achieve at the optimal solution is 192.885.
This means that there will still be at least
~193 unoccupied classroom seats after
assigning classes in a way that would
maximize seating. We noticed that there are
3 classes that significantly contribute to
unoccupied seating: STAT422, 0IDD105 and
0IDD236, which each have ~31, ~28 and
~37 unoccupied seats respectively. This is
because the predicted enrollment counts for
all three classes are largely misaligned with
the available classroom capacities. For
instance, 0IDD236, which offers 1 section,
has a total enrollment of ~87, but the
smallest classroom available to fit that many
students has a capacity of 123. To further
minimize unoccupied seats, Wharton should
optimize the number of sections offered for
these 3 classes (holding all else equal and
assuming no construction of new
classrooms). For instance, by offering 2
sections of 0IDD236, each section will have
~44 students and can each use classrooms
with 50 seats, minimizing total unoccupied
seats from this class to ~12.

2.  Smaller classrooms mostly needed
At the optimal solution, 12 sections require
classrooms with 25 seats, 7 sections
require classrooms with 50 seats, while no
sections require classrooms with either 150
or 299 seats. This is primarily because of
the abundance of seminar-style and SAIL
(i.e. Structured Active In-class Learning)
classes in BUAN, which typically limit the
number of students enrolled per section to
maximize in-class learning, discussion and
interaction. PenninTouch confirms this point,
as the majority of BUAN classes listed have
a maximum enrollment capacity ranging
from around 35 to 45 students.

S = P

Same time slots for unrelated class pairings

At the optimal solution, the following

classes can be scheduled simultaneously:
e  STAT422 and STAT435

STAT430 and STAT471

STAT405 and STAT475

OIDD105 and OIDD201

0IDD220 and 0IDD245

0IDD314 and 0IDD325

0IDD222 and 0IDD353

0IDD399 and 0IDD415

Because we are trying to minimize the total
covariance of classes scheduled together, it
makes sense that the classes that were
paired together at the same times are
relatively unrelated (i.e. low covariance) at
the optimal solution. For instance, STAT405
teaches programming in the R computer
language whereas STAT475 covers
designing different types of sample surveys,
two rather dissimilar topics in statistics (i.e.
covariance = 0.270).

Additionally, it is worth noting that the
minimum total covariance of OIDD classes
paired together is higher (2.106) than that
of STAT classes (0.587). This likely stems
from the fact that there are 11 OIDD classes
but only 9 STAT classes in BUAN, resulting in
more overlaps in OIDD given the same 6 time
slots (i.e. 5 class pairings for OIDD versus 3
for STAT). Moreover, on average, OIDD
classes seem to be more related to each
other compared to STAT classes, as the
average covariance of all OIDD pairings is
0.466 versus 0.305 for STAT pairings.

Going one step further, we conclude that all
other classes not listed above should not be
paired together as they are relatively
related (i.e. high covariance). Furthermore,
no class can be paired with itself, and this
rule was upheld at the optimal solution
despite us not explicitly specifying it as a
constraint. This is likely because Solver
automatically ruled out class pairings with a
covariance of 1 (i.e. the highest possible
covariance for a pair) when attempting to
minimize total covariance among pairs.



V. Risks & Improvements

Academic Restrictions and Size led to

Oversimplifications in the Final Model
Running the initial model wasn't feasible given the
thousands of decision variable cells Solver couldn't
run and the academic restrictions and bugginess of
OpenSolver. As such, we had to simplify the model
extensively, resulting in a few limitations.

Limitations
We identified three main risks and limitations to
using this model:

1. Doesn’t account for overlap
Firstly, the model does NOT account for
STAT and OIDD classes potentially
overlapping with covariances. This is
because we've only accounted for STAT
classes overlapping with other STAT classes
and OIDD classes doing the same with other
OIDD classes. As a result, we aren’t able to
determine which BUAN classes should
coexist with each other, rather we’re only
able to select the most in-demand
STAT/OIDD classes should these sections
be incapable of coexisting.

2. Excludes MBA students
Secondly, the current model does not include
MBA students, which could result in
excluding graduate level classes that are
high sought after by graduate students but
not necessarily by undergraduate students.
For example, STAT 476 is an advanced class
that reserves 50 seats for graduate students
while only 25 for undergraduates. If, say, 5
undergraduates enrolled in that course, while
50 graduate students did the same, the
model would not recommend including
STAT 476 into the course schedule despite
having an enrollment rate of 79%.

3. Does not account for irregular schedules
Thirdly, model does not take into
consideration classes that meet for 3 hours
straight and don’t meet twice a week, which
can lead to an inaccurate assortment of
classes, such as STAT 475.

S = P

Initial Model

The initial model was designed to optimize/solve for
which STAT and OIDD classes belonged to which
classrooms throughout the school week. This differs
from our current model in that the initial model was
designed to efficiently allocate all STAT and OIDD
classes, not just those related to BUAN, in all
relevant classrooms. Doing so, however, required the
usage of over 3000 decision variable cells, which is
too much for Solver to handle. We then attempted to
utilize OpenSolver but found that Wharton had
limited the capabilities of the software to the point
where the problem still could not be solved.

=5

The initial model had well over 3,000 decision variable cells, rendering it unsolvable for Solver

Future Model Improvements

Moving forward, we could implement better
estimates for covariances as cosine similarity is not
the most accurate estimate and have two time slots
allocated for each class. We would also use Crystal
Ball and OptQuest to simulate and optimize for
uncertainty so that the model wouldn't only be
relevant for one semester. Instead of using moving
averages to forecast class demand, we would opt for
exponential smoothing which we would use to
emphasize the weight on recent demand. Finally, we
would account for overlaps between STAT and OIDD
classes instead of limit the model to the classes
respective departments.

Applications

Finally, this model is only a prototype with extremely
rough estimates and assumptions. Should Wharton
ever use this model, the institution could greatly
enhance its functionality and accuracy by inputting
the actual enroliment data and updating the
covariance method to account for whether or not
students take certain classes simultaneously. The
school would also not need to use moving averages
to forecast demand anymore as it already possesses
the enroliment data. Eliminating forecasts would
greatly improve the accuracy to best
optimize/maximize enrollment rates.



VI. Appendix A

Wharton Syllabi (Demand Information)

En: [l
In: [3]:3
In [4]:
In [5]:

import requests
import pandas as pd
import numpy as np

#Prepare Data Structure
title = []
instructor = []
start_time
stop_time = []
section_id =
enrollment
term = []
classes = pd.DataFrame({"title" : title,
"instructor":instructor,
"start_time":start_time,
"end_time":stop_time,
"section_id":section_id,
"enrollment" :enrollment,
"term" :term})

Il
—
—

[
——
—

#Prepare Department and Year Labels
department = ["STAT","OIDD"]
terms = np.arange(2016,2021)

#Function to concatenate Letter
def add_letter(x,a):
return str(x)+a
letter_vect = np.vectorize(add_letter)



VI. Appendix A

In [7]:

In [10]:

#Prepare Term List

terms_p = list(letter_vect(terms[:-1],a="C")) + list(letter_vect(terms,a

="a"))

#Scrape Demand Data from Wharton Syllabi
for j in terms_p:
urll = "https://apps.wharton.upenn.edu/syllabi/api/syllabi-list-resu

lts/?term=" + j

for i in department:

url = urll + "&sections='

respons

e

"

+ 4
requests.get(url = url)

res = response.json()

title =

stop_ti

[1

instructor
start_time

me

i}
[]
=[]

section_id = []

enrollment

term =

[]

= 0]

for items in res:
if items['stop_time'] is None:
continue

els

temp =

classes

e:

title.append(items['title'])

instructor.append(items['timetable_instructor'])

start_time.append(items['start_time'])
stop_time.append(items[ 'stop_time'])
section_id.append(items[ 'section_id'])
enrollment.append(items[ 'enrollment’'])
term.append(items[ 'term'])

pd.

DataFrame({"title" : title,
"instructor":instructor,
"start_time":start_time,
"end_time":stop_time,
"section_id":section_id,
"enrollment" :enrollment,

"term" :term})
classes.append(temp, ignore_index=True)

#Aggregated Demand Data

def get_mid_3(x):
return int(x[4:7])

extract = np.vectorize(get_mid_3)

classes["section"] = extract(classes['section_id'])

cleaned = classes[classes[ 'section']<=500].reset_index()

cleaned.to_csv("class_cleaned.csv")



VI. Appendix B

Penn Labs (Course Rating)

In [91]:

In [226]:

In [233]:

#Prepare class list for Penn Labs Scraping# Wharton Syllabi (Demand Info
rmation)
perl = pd.DataFrame({"class_code"

cleaned[ 'section_id'].apply(lambda x: x[0:7]).apply(lambda
X: x.lower()).apply(lambda x: x[0:4]+"-"+x[4:7]),

"term":
cleaned[ 'term'].apply(lambda x: x.lower())})
perl clean = perl[(perl.term != "2020a") &
(perl.term != "2019c")].sort_values("term",

ascending = False)
.drop_duplicates().drop_duplicates(['class_code'])
comp = list(perl_clean['term'] + "-" + perl clean['class_code'])

#Scrape Penn Labs Course Rating data
list pd = []
for i in comp:
try:
r2 = requests.get("http://api.penncoursereview.com/vl/courses/"
+ i1 + "/reviews?token=sQ86NYrmWNIXDG27xjh8g40ECSE6Px")

q = i[6:]
clear pd = []
for j in r2.json()['result']['values']:

clear_pd.append(pd.DataFrame.from dict(j["ratings"], orient=
'index').transpose())
full pd = pd.concat(clear_pd).astype(float)
full pd.loc[:,'class'] = q
list_pd.append(full pd)
except:
print (i)

2019a-stat-474

#Aggregated Penn Labs Rating Data

course_rating = pd.concat(list_pd)

course_rating_agg = course_rating.groupby("class").mean().reset_index()[
["class", "rAmountLearned", "rCourseQuality","rDifficulty", "rWorkRequi

red"]]

course_rating_agg.to_csv("course_rating.csv")



VI. Appendix C

Penn Labs (Course Description)

In [113]:

In [149]:

In [238]:

#Scrape Penn Labs Description # Penn Labs (Course Rating)data
course_code = []
course_descrip = []
for i in comp:
try:
rl = requests.get("http://api.penncoursereview.com/vl/courses/"
+ i + "?token= )
#r2 = requests.get("http://api.penncoursereview.com/vl/courses/"
+ 1 + "?token=sQ86NYrmWNIXDG27xjh8g40ECSE6Px")
course_descrip.append(rl.json()[ 'result'][ 'description'])
course_code.append(i[6:])
except:
print (i)
course_code.append(i[6:])
course_descrip.append("Function estimation and data exploration
using extensions of regression analysis: smoothers, semiparametric and
nonparametric regression, and supervised machine learning. Conceptual f
oundations are addressed as well as hands-on use for data analysis.")

#Compile Class Description Data

class_with_descrip = pd.DataFrame({"course_code" : course_code, "course_d
escrip" : course_descrip})

course = pd.read csv("/Users/davidfan/Downloads/course.csv").drop_duplic
ates("title").reset_index()

course["title"] = course["title"].apply(lambda x: x.lower()).apply(lambd
a x: x[0:4]+"-"+x[4:7])

relevant_classes = class_with_descrip.sort_values(["course_code"]).merge
(course,

left_on = ["course_code"],

right_on = ["title"])[["course_code","course_descrip"]]

#Function To Extract Cosine Similarity
from collections import Counter
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def get_cosine_sim(*strs):
vectors = [t for t in get_vectors(*strs)]
return cosine_similarity(vectors)

def get_vectors(*strs):
text = [t for t in strs]
vectorizer = CountVectorizer(text)
vectorizer.fit(text)
return vectorizer.transform(text).toarray()



In [252]:

In [273]:

VI. Appendix C

#Class of Interest
class_code = """stat-405
stat-422
stat-430
stat-442
stat-435
stat-471
stat-474
stat-475
stat-476
0idd-105
0idd-201
0idd-220
0idd-222
oidd-236
o0idd-245
oidd-314
0idd-325
0idd-353
0idd-399
oidd-415"""

#Sort Data Frame to best fit the class code above
class_with_descrip[ 'dummmy'] = class_with_descrip.course_code.apply(lamb
da x: x[0:1]) == "o"
class_with_descrip = class_with_descrip.sort_values(["dummmy", "course_co
de"])
#Extract Consine Similarity
similarity df = pd.DataFrame(
get_cosine_sim(*class_with_descrip[[i in class_code.split("\n")
for i in class_with_descrip.cour
se_code]].course_descrip))
#Rename Column and Index
similarity df.columns = class_with_descrip[[i in class_code.split("\n")
for i in class_with_descrip.
course_code]].course_code
similarity df.index = class_with_descrip[[i in class_code.split("\n")
for i in class_with_descrip.co
urse_code]].course_code



In [279]:

out[279]:

In [280]:

similarity_ df

course_code

course_code

stat-405

VI. Appendix C

stat-422

stat-430

stat-435

stat-442

stat-471

stat-474

stat-475

SINE SroRibvS

stat-405
stat-422
stat-430
stat-435
stat-442
stat-471
stat-474
stat-475
stat-476
oidd-105
oidd-201
oidd-220
oidd-222
oidd-236
oidd-245
oidd-314
oidd-325
oidd-353
oidd-399

oidd-415

1.000000

0.286770

0.250000

0.382484

0.390312

0.396928

0.182450

0.269582

0.480930

0.531975

0.434813

0.422107

0.500562

0.494989

0.475739

0.443194

0.607027

0.557379

0.192879

0.502992

0.286770

1.000000

0.229416

0.274689

0.183680

0.170297

0.239182

0.247385

0.253917

0.262167

0.232152

0.211283

0.285112

0.229991

0.233876

0.213352

0.278523

0.282663

0.070799

0.301625

0.250000
0.229416
1.000000
0.332595
0.220176
0.134028
0.312772
0.242624
0.263523
0.197028
0.316228
0.383733
0.276172
0.200502
0.169907
0.232495
0.274141
0.234686
0.154303
0.239046

0.382484
0.274689
0.332595
1.000000
0.308895
0.395020
0.319014
0.344301
0.603008
0.534728
0.395461
0.449250
0.416403
0.440127
0.470165
0.463961
0.463705
0.483943
0.266867

0.477033

0.390312

0.183680

0.220176

0.308895

1.000000

0.389611

0.283807

0.293540

0.371338

0.435385

0.415223

0.393258

0.375895

0.385272

0.391779

0.390905

0.432706

0.450958

0.098833

0.344502

0.396928

0.170297

0.134028

0.395020

0.389611

1.000000

0.283767

0.231241

0.447741

0.539519

0.401663

0.333378

0.504919

0.483711

0.566153

0.493779

0.481287

0.520208

0.203628

0.496190

0.182450

0.239182

0.312772

0.319014

0.283807

0.283767

1.000000

0.337270

0.296721

0.295798

0.276940

0.277382

0.211148

0.167230

0.333024

0.327231

0.244982

0.269145

0.193047

0.240915

similarity df.reset_index().to_csv("similarity index.csv")

1—

0.269582

0.247385

0.242624

0.344301

0.293540

0.231241

0.337270

1.000000

0.340997

0.348435

0.218238

0.264826

0.258097

0.259448

0.263830

0.275777

0.337845

0.328989

0.133112

0.352285



VI. Appendix D

Prior Demand Calculations

class
stat-405
stat-422
stat-430
stat-442
stat-435
stat-471
stat-474
stat-475
stat-476
oidd-105
oidd-201
oidd-220
oidd-222
oidd-236
oidd-245
oidd-314
oidd-325
0idd-353
oidd-399
oidd-415

rAmountLearned rCourseQuality rDifficulty

3.135
227
3.26
247

3.425
2.68
2.37
3.65

3.335
3.08
3.21
3.27
3.63

3.706666667
3.37

1.93

3.07

3.4

2.498

1.885
2.93
2.36
3.2
279
22
3.53

3.075

3.12
3.29
3.76
3.64
3.295
217
3.09
3.62
2.844

2.89

3.37

3.32

232

2.925

2.8

2.31
3.676666667
3.175

242

2.58

2.33

2.71
2.643333333
25

1.93

3.65

0.48

1.802

rWorkRequired Prior Demand

247

2.3425

3.16

2.53

3.12

2

2.32
3.546666667
3.06

2.58

247

23

26
3.023333333
1.905

1.73

3.45

0.93

2.484

97.5
45.1875
87.8
72
102.525
85.9
66.85
106.15
95.225
99.1
103.6
112.95
127.15
123.25
114.875
66.1
85
150.15
92.35

Coefficients

15
30
Diffici -10
Work Required -5

1—



12.25
2540
40-50
50-60
60-78
78-100
123150
150-299

Differences
Objective

VI. Appendix E

Model Results

Part 1: Classroom Allocation

STAT405 STAT422 STAT430 STAT442 STAT435 STATA71 STATA74 STATA75 STAT476 OIDD105 OIDD201 OIDD220 OIDD222 0OIDD236 0OIDD245 OIDD314 OIDD325 OIDD353 OIDD399 OIDD415

0 4 1 1 0 1 2 0 2 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
2 0 1 0 1 1 0 0 0 0 i 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.00625 30.8275 234375 576 95 57425 11.63 8.945 8454993 279325 767 372 7.015 36.555 5525 08375 517 33 1.955 8.995

Part 2a: Class Scheduling (STAT Iteration)
STAT405 STAT422 STAT430 STAT442 STAT435 STATA71 STAT474 STATA75 STATA76

STAT405 0 0 0 0 0 0 0 1 0
STAT422 0 0 0 1 0 0 0 0
STAT430 0 0 0 1 0 0 0
STAT442 0 0 0 0 0 0
STAT435 0 0 0 0 0
STAT471 0 0 0 0
STAT474 0 0 0
STAT475 0 0
STAT476 0

STAT405 STAT422 STATA30 STAT442 STATA35 STAT471 STAT474 STAT4A75 STAT476

Time1 0 0 0 0 0 0 0 0 1
Time2 0 0 0 0 0 0 1 0 0
Time3 0 0 1 0 0 1 0 0 0
Timed 0 1 0 0 1 0 0 0 0
Time5 1 0 0 0 0 0 0 1 0
Time6 0 0 0 1 0 0 0 0 0

Objective -



VI. Appendix E

Model Results

Part 2b: Class Scheduling (OIDD Iteration)

0OIDD105 OIDD201 OIDD220 OIDD222 OIDD236 OIDD245 OIDD314 OIDD325 OIDD353 OIDD399 OIDD415

0IDD105 0 1 0
0IDD201 0 0
0IDD220 0
0IDD222
0IDD236
0IDD245
0OIDD314
0IDD325
0IDD353
0OIDD399
0IDD415

o o O o

o O O o O

o O O - O O
o000 OO0 00
o - 0O 0 0 0 0 O

OIDD105 OIDD201 OIDD220 OIDD222 O0IDD236 OIDD245 OIDD314 OIDD325

Time1 0 0 0 0 0 0 1 1
Time2 0 0 1 0 0 1 0 0
Time3 0 0 0 0 0 0 0 0
Time4 0 0 0 1 0 0 0 0
Time5 0 0 0 0 1 0 0 0
Time6 1 1 0 0 0 0 0 0
Objective -

o O O 0O 0O - O 0o O

0 OO0 OO0 O 0 O O

O A O 0 0 0 0 0 0 O O

0OIDD353 OIDD399 0IDD415

o O 2 O O o

(=T = R

(=T = =



